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Abstract  This paper presents the results of optimization of an integrated inlet/ejector system of a 
rocket based combined cycle (RBCC) engine.  A 2-D axisymmetric model of inlet/ejector was 
considered for this study. Newly introduced multidisciplinary optimization (MDO) approach of 
collaborative optimization (CO) was used. CO is a multidisciplinary design optimization technique 
that allows coupled engineering design problems to be uncoupled and solved concurrently. 
Optimization within CO was carried out with NPSOL, a nonlinear gradient-based optimizer code. 
The CFD simulations of the inlet/ejector system were carried out with the commercial code STAR-
CD. A response surface with four design variables and the objective function was generated from 
CFD simulation results. The data from the response surface was used to train a neural network 
using MATLAB. The neural network was used for approximating the objective function, which 
was used by NPSOL. 

 
 

INTRODUCTION 
 

Continued interest in achieving low cost trans-
atmospheric vehicle stimulates constant efforts to 
develop advanced technologies for space transportation 
system. A primary element of this goal lies in the 
development of advanced propulsion system capable of 
meeting both the performance and mission goals. The 
Rocket Based Combined Cycle (RBCC) is one 
promising approach, which has received considerable 
interest throughout the last 30 years. The RBCC concept 
utilizes air-breathing propulsion along with rocket 
propulsion to take advantage of the ambient oxidizer in 
the initial phase of the flight trajectory. Throughout the 
flight path, four modes of engine operation are generally 
employed: rocket-ejector, ramjet, scramjet, and rocket 
only. The least well understood of these modes is the 
rocket-ejector mode, which is employed from take off 
until approximately Mach 2.  
 
   Inlet system is a critical component of air-breathing 
engines. The inlet system must provide the required 
airflow at all operational flight speeds, allow a realistic 
variable geometry system for the internal flow path 
downstream, and minimize the occurrence of inlet “un-
start”. 
 
   Ejector is a generic name for a device, where a higher 
speed primary jet induces the flow of an ambient 
secondary fluid in an enclosing duct or shroud by 
pumping it from a lower to higher pressure. One 
particular type of the ejector is the thrust augmenting 
ejector whose function is to enhance the thrust of a 
primary exhaust jet by transferring energy from the 

primary to speed up the secondary flow, thereby 
increasing the momentum of the jet. The additional 
thrust results from the more efficient utilization of 
available energy in the exhaust. The simple design of 
thrust augmenting ejectors and their absence of moving 
parts makes it easy to accommodate them to a system in 
a light weight, low volume manner.  
 
   The success of a rocket ejector depends on the 
effectiveness of the mixing. The use of a single rocket 
engine on the axis with a concentric outer shroud results 
in an inordinately long mixer. Since the mixing rate 
depends on the interfacial shear area between the 
primary and the secondary, there are numerous schemes 
available for obtaining enhanced mixing in shorter 
lengths. The simplest is to use multiple rocket engines 
of smaller diameter. A second approach is to sue 
annular nozzles. Finally, improved mixing can be 
attained by using jets of different cross sectional 
geometries, such as elliptical jets.  
 
   The objective of this study is to optimize a 2-D 
axisymmetry inlet/ejector system of a RBCC engine. A 
schematic of a RBCC engine is shown in Figure 1. 
Multidisciplinary optimization architecture tied with 
response surface and neural networks technique has 
been used for this purpose.  
 

NUMERICAL APPROACH: 
 
   The CFD simulations of the inlet/ejector system of 
RBCC engine were performed with the commercial 
code STAR-CD. This code solves the Reynolds 



ICME 2001, Dhaka, December 26-28 

Section III: Thermal Engineering  174 

  conditions. To solve the system of nonlinear partial 
differential equations, the code uses finite difference 
approximations to establish a system of liberalized 
algebraic equations. Several differential schemes such 
as central difference, second order upwind were 
employed to approximate the convective terms of the 
momentum, energy and continuity equations. A variant 
of predictor/corrector method with one predictor and 
two corrector steps were used.  
 
   For the present study the geometry is taken from [1] 
with some changes in dimension and location of 
boundaries. The geometry is divided into 7 blocks.  
Block 5,6 and 7 are added to the physical domain for 
better shock capturing and result smoothness. The 
inlet/ejector geometry along with the grids is shown in 
Figure 2.  
 
   Four geometry design variables were used to generate 
64 different geometries. The solution converged in less 
than 1500 iterations for all different geometries.  The 
variables and their values are shown below: 

1-Inlet area (Ai), two choices, 6.5 and 7 cm  
2- Throat area (At), four choices: 2.5,3.0,3.5,5.0 cm 
3-Secondary exit area (As): four choices, 
1.75,2.0,2.25,2.5 cm 
4- Ejector exit area (Ae): two choices, 7.54 and 8.59 cm 
 
COLLABORATIVE OPTIMIZATION 
The collaborative optimization architecture, a form of 
multidisciplinary optimization method, is designed to 
promote disciplinary autonomy while achieving 
interdisciplinary compatibility. As sketched in Fig 3 the 
problem is decomposed along analyses–convenient 
boundaries and subspace optimizers are integrated with 
each analysis-block. Through subspace optimization 
each group is given control over its own set of local 
design variables and is charged with satisfying its own 
domain-specific constraints. Explicit knowledge of the 
other groups constraints or design variables are not 
required. The objective of each subspace optimizer is to 
agree upon the values of the interdisciplinary variables 
with the other groups. A system-level optimizer is 
employed to coordinate this process while minimizing 
the overall objective.  
 
   The fundamental idea behind the development of the 
collaborative optimization architecture is that 
disciplinary experts should participate in the design 
decision process while not having to fully address local 
changes imposed by the other groups of the system. 
This decentralized decision strategy is not only a 
practical approach to design, but may also allow for the 
use of existing disciplinary analyses without major 
modification. This is not a trivial advantage, as the 
practical acceptance of many MDO techniques is 
limited by their implementation overhead requirements. 
sketched in Figure 3 the system level optimizer relies on 
information provided by repeated subspace optimization 

to coordinate the various sub problem optimization. One 
means to convey this information, as discussed in [2] 
and used later in this paper, is with gradients. However, 
alternative methods may also be possible in which the 
system level optimization algorithm is not restricted to 
gradient-based techniques. Although beyond the scope 
of the present investigation, one can envision a conflict 
resolution strategy        (analogous to an auction) in 
which the subspace bid for desired changes in each 
interdisciplinary variable [3].  Here, each subspace may 
have a fixed allocation of points to spend in bidding for 
the interdisciplinary variables at each system-level 
iteration. In this manner, a group’s strong convictions 
on the proper value of a certain interdisciplinary 
variable would be weighted appropriately. 
 
   The collaborative optimization architecture provides a 
higher degree of design freedom within the subspace 
while reducing the interdisciplinary communication 
requirements.  
 
NEURAL NETWORK 
Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by 
biological nervous systems. As in nature, the network 
function is determined largely by the connections 
between elements. We can train a neural network to 
perform a particular function by adjusting the values of 
the connections (weights) between elements. Commonly 
neural networks are adjusted, or trained, so that a 
particular input leads to a specific target output. The 
network is adjusted, based on a comparison of the 
output and the target, until the network output matches 
the target. Typically many such input/target pairs are 
used, in this supervised learning, to train a network. 
Neural networks have been trained to perform complex 
functions in various fields of application including 
pattern recognition, identification, classification, and 
control systems. Today neural networks can be trained 
to solve problems that are difficult for conventional 
computers or human beings. In this work back-
propagation network was used.  
 
   Generalizing the wodrow-hoff learing rule to 
multiple-layer networks and nonlinear differential 
transfer functions created back propagation. Input 
vectors and the corresponding output vectors are used to 
train a network until it can approximate a function, 
associate input vectors with specific output vectors, or 
classify input vectors in an appropriate way as defined 
by you. Networks with biases, a sigmoid layer, and a 
linear output layer are capable or approximating any 
function with a number of discontinuities.  
 
   Standard back propagation is a gradient descent 
algorithm. The term back propagation refers to the 
manner in which the gradient is computed for nonlinear 
multi-layer networks. Present study used NN to learn a 
response surface from 64 CFD runs to a steady sate flow 
in an inlet/ejector system and later it was used for 
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evaluating an objective function during the optimization 
process. A feed forward back-propagation network was 
used. The data was entered into the net as [4x1] matrix. 
In the first layer “tangsig” function from MATLAB NN 
toolbox was used as transfer function in four neurons. In 
the second layer “purelin” was used in one neuron. The 
neural network is shown in Figure 4. 
 

RESULT AND DISCUSSIONS 
 
   The CFD data of 64 cases were used to generate a 
response surface. This response surface was used for 
training the neural network and this later it was used for 
objective function evaluation, during the optimization 
process.  

The objective function was defined as : 

β+=
rP

F 1
 

in which Pr is the pressure recovery and β is the mass 
flux ratio of the primary rocket to the secondary airflow.  
 
   An inlet/ejector in a RBCC engine is a single 
discipline system from multidisciplinary optimization 
point of view. Since any change in geometry or flow 
condition on boundaries, will affect the whole system 
from entrance to the nozzle at the end. On the other 
hand, as problem gets bigger by including more and 
more variables, using a single optimizer will be more 
difficult even by isolating the inlet/ejector from other 
disciplines in the vehicle design. So it is logical to start 
the inlet/ejector as a multidisciplinary optimization 
problem.  
 
   To start we show the decomposition for a simple 
bounded form in which two disciplines are both limited 
to the domain variables. In this form the collaborative 
optimization will converge in first iteration because two 
disciplines will agree with system level suggestion. In 
the second run, we apply one linear constraint to each of 
the disciplines such that when these two disciplines 
receive the suggested values from the system level, they 
will not necessarily agree, and start sending back the 
new suggestions as they try to decrease the discrepancy 
between the system level variables and their own suited 
variables. First decomposition is shown below. Two 
subsystems are the same and it is not possible to 
optimize one of the elements of the objective function in 
one subsystem and the other one in the second 
subsystem since the problem is unbounded. In this case 
each subsystem variable is a system level variable as 
well.  
 
System Level 
Min F(Z)=1/Pr(Z1,Z2,Z3,Z4) + β (Z1,Z2,Z3,Z4) 
s.t. 
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s.t.   li<Xi<ui for i.=1,4 
in which: 
X1 represents Ai, the inlet area 
X2 represents At, the throat area 
X3 represents As, the secondary airflow area 
X4 represents Ae, the ejector exit area 
This system is optimized in the first iteration, and the 
result of this optimization is shown here: 
Final nonlinear objective value=1.652109 
corresponding to: 
Ai=6.500 
At=4.00 
As=4.00 
Ae=7.906 
 

In the second run two linear constraints are added 
to the original problem, each of them applied to one of 
the disciplines. As a result of this the two constraints did 
not let the system level to converge to the first optima. 
So system level started to minimize the function subject 
to the system level constraints and subsystems tried to 
reduce the discrepancies.  

Two added constraints are as follows: 
1- Throat area should be less or equal to 50% of the 
inlet area 
2- Secondary area should be equal or greater than 50% 
of the exit area. 

Some of the optimally constraints are mentioned in 
[4] but the above constraint were chosen arbitrarily to 
show the effect of constraints existence.  
System Level 
Min F(Z)=1/Pr(Z1,Z2,Z3,Z4) + β (Z1,Z2,Z3,Z4) 
s.t. 
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s.t.   li<Xi<ui for i.=1,4 
s.t.   2X3 – X4>0 
Subsystem 2: 

Min g2=
2*
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s.t.   li<Xi<ui for i.=1,4 
s.t.   2X2 – X1<0 
 
The result of this optimization is shown below: 
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Final nonlinear objective value=3.850653 
corresponding to: 
Ai=6.998 
At=3.497 
As=4.549 
Ae=8.101 

After 79 iterations, system level converged to 
this point. Figure 5 shows a convergence history of 
system level objective function and two constraints. 
Figure 6 shows how the value of objective function 
jumps from one solution domain to another one, as it 
tries to reduce the interdisciplinary discrepancies. 
Figure 7 shows how the system level constraints varied, 
during the iterations. The results show that the 
minimum value of the function always occurred when 
the constrains are relatively big and the iterations 
continue. Figure 8 shows the variation in the system 
level variables, which are the areas. The inlet area is 
constant in all the iterations but the others are reducing 
to the optimum point.  
 

CONCLUSIONS 
 
   Collaborative optimization algorithm was successfully 
applied to an integrated inlet/ejector system of a RBCC 
engine. Four geometric design variables were used to 
optimize the chosen objective function. Commercial 
CFD code STAR-CD was used to generate the response 
surface. The data from the response surface were used 
to train a neural network using MATLAB. The gradient 
based nonlinear optimizer NPSOL was used for both 

system level and subsystem level optimization. One 
additional linear constraint for each of the disciples was 
applied to demonstrate the optimization process.  
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Figure 1.  Components of a RBCC Engine. 
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Figure 2.  The Inlet/Ejector Grids. 
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Figure 3.  The Collaborative Optimization Architecture in Detail. 
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Figure 4.  A Two-Layer Backpropagation Network. 
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Figure 5.  A History Graph of Objective Function 
   and Constraints in System Level. 
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Figure 7.  A History Graph of the C1 and C2 
       in System Level 
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Figure 6.  A History Graph of the Objective 
   Function in the System Level. 
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Figure 8.  A History Graph of the Areas in 
          System Level 
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